工件的形狀、尺寸和加工要求選擇合適的夾具。如三爪卡盤適用于圓形或正六邊形等規則形狀工件的裝夾,裝夾時需確保工件中心與車床主軸中心重合,偏差應控制在允許范圍內(一般不超過 0.05mm)。對于不規則形狀工件,可選用四爪卡盤或夾具進行裝夾,并進行仔細找正。使用合適的扳手或工具將工件夾緊在夾具上,注意夾緊力要適中,既要保證工件在加工過程中不會松動位移,又不能因夾緊力過大而損壞工件表面或使工件變形。對于薄壁類工件,夾緊力更要嚴格控制。零件在數控車床上的加工順序通常按照先粗加工后精加工的原則安排。國產數控車床簡介
機械部件的保養
床身和導軌的維護床身是數控車床的基礎部件,導軌則是保證刀具和工件相對運動精度的關鍵。要定期清理床身和導軌表面的切屑和油污,因為切屑會加劇導軌的磨損,油污會影響導軌的潤滑效果。可以使用干凈的軟布和清潔劑進行清理。清理后,要在導軌表面涂上適量的潤滑油,保證導軌的潤滑良好。對于高精度的數控車床,還可以采用自動潤滑系統,定時定量地為導軌提供潤滑油。
主軸部件的保養
主軸是數控車床的重要部件之一,它的精度直接影響加工精度。要定期檢查主軸的旋轉精度,如徑向跳動和軸向竄動。可以使用百分表等測量工具進行檢測。如果發現主軸的跳動或竄動超出允許范圍,要及時調整或維修。同時,要定期更換主軸的潤滑脂或潤滑油,一般情況下,高速主軸每 2000 - 3000 小時需要更換一次潤滑脂,以保證主軸的良好潤滑和散熱。 南京數控車床行價對數控車床的定期維護保養能延長其使用壽命和保證加工精度。
起源與誕生20世紀40年代末,美國帕森斯公司在為美國空軍研制飛機的螺旋槳葉片時,因受制于其制作工藝要求高,開始研制計算機控制的機床加工設備。
1951年,首臺電子管數控車床樣機被正式研制成功,成功地解決了多品種小批量的復雜零件加工的自動化問題。
1952年,美國麻省理工學院研制出一套試驗性數字控制系統,并把它裝在一臺立式銑床上,成功地實現了同時控制三軸的運動,被稱為世界上首臺數控機床,不過這臺機床屬于試驗性的。
1954年11月,在帕爾森斯基礎上,首臺工業用的數控機床由美國本迪克斯公司研制成功。
1958年,美國又研制出了能自動更換刀具,以進行多工序加工的加工中心,標志著數控技術在制造業中的重大突破,具有劃時代的意義。
排刀式刀架結構特點:排刀式刀架是一種簡單的刀架結構,刀具沿著車床的 X 軸方向排列安裝在床身的滑板上。通常沒有自動換刀功能,刀具的更換需要人工操作。它由刀座和夾緊裝置組成,刀座用于固定刀具,夾緊裝置確保刀具在加工過程中不會松動。適用場景:這種刀架結構簡單、成本低,適用于加工形狀不太復雜、工序較少的零件。例如,在一些小型精密零件的加工中,如鐘表零件、小型電子設備的軸類零件,使用排刀式刀架就可以滿足外圓、臺階面等簡單工序的加工需求。而且,由于排刀式刀架刀具布置緊湊,在進行某些高精度加工時,可以減少刀具換刀誤差,有利于提高加工精度。數控車床的對刀儀能快速準確地確定刀具與工件之間的相對位置。
在醫療器械制造領域,數控車床也有著廣泛的應用。例如,骨科植入物如人工關節、接骨板等,需要與人體骨骼高度匹配,這就要求加工精度達到極高的水平。數控車床能夠精確地加工出復雜的曲面和精細的結構,滿足醫療器械個性化定制的需求。同時,數控車床在加工過程中嚴格遵循醫療行業的衛生標準和質量控制體系,確保每一個醫療器械產品都符合安全、有效的要求,為患者的健康保駕護航。總之,數控車床以其優異的性能和適用性,在機械制造、汽車工業、航空航天、醫療器械等眾多領域都有著至關重要的地位。它不僅推動了制造業的高精度、高效率發展,更是為現代科技產品的創新和升級提供了強有力的技術支撐,是現代制造業當之無愧的精密利器。數控車床通過計算機數字控制系統,精確控制刀具的運動軌跡和切削參數。江蘇智能數控車床價位
刀具在數控車床的刀架上有序排列,能快速切換進行不同工序的加工。國產數控車床簡介
液壓刀架驅動特點:
液壓刀架是利用液壓系統提供的動力來驅動刀盤旋轉。液壓系統通過液壓缸、液壓馬達等執行元件,將液壓能轉化為機械能,使刀架進行換刀操作。液壓刀架的優點是承載能力強,可以承受較大的切削力,并且在刀盤旋轉過程中更加平穩。其缺點是系統相對復雜,需要配備液壓站,成本較高,而且存在液壓油泄漏的風險。
適用場景:適用于大型數控車床或在加工過程中需要承受較大切削力的場合。例如,在重型機械制造行業,加工大型軸類、盤類零件時,由于切削余量較大,切削力較強,液壓刀架能夠更好地保證刀架的穩定性和可靠性,確保換刀過程順利進行。 國產數控車床簡介